Engineers at NASA’s Johnson Space Center and White Sands Test Facility teamed up with Dallas-based Armadillo Aerospace through an Innovative Partnership Program agreement to design and test a rocket engine that runs on liquid oxygen and liquid methane, for use on the moon or other extraterrestrial surfaces.
Armadillo developed the engine, JSC designed and fabricated the nozzle and provided oversight on the project, and White Sands contributed the testing facilities. The project was jointly funded through the NASA Innovative Partnership Program office, the Propulsion and Cryogenic Advanced Development project, and Armadillo Aerospace.
The result was an engine that runs reliably on propellants that are not only cheaper and safer here on Earth, but could also be potentially manufactured on the moon or even Mars.
For decades – since the Apollo program – NASA has been using hypergolic propellants. They’re nice because all you have to do to make them ignite is mix them together – once they come into contact with each other, you can depend on them to perform as planned.
But you pay a price for that dependability, literally and figuratively. They’re expensive, they’re heavy and they’re toxic. So, since the late 1990s NASA has been looking into other options. One of those options is a combination of liquid methane and liquid oxygen.
Cryogenic liquid methane and liquid oxygen are 10 to 20 times less expensive than hypergol propellants. They weigh less, which is important because every pound of weight carried into space requires 15 pounds of fuel to send it there. And they’re nontoxic, so if, for instance, they’re used by a lunar lander, astronauts performing moonwalks won’t have to worry about traces of it hanging around on the lunar surface and contaminating their spacesuits.